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We determine probabilities of recurrence time into finite-sized, physically meaningful subsets of phase
space. We consider three different autonomous chaotic systems: �i� scattering in a three-peaked potential, �ii�
connected billiards, and �iii� Lorenz equations. We find multipeaked probability distributions, similar to the
distributions found in �driven� stochastically resonant systems. In nondriven systems, such as ours, only
monotonic decaying distributions �exponentials, stretched exponentials, power laws, and slight variations or
combinations of these� have hitherto been reported. Discrete peaks in autonomous systems have as yet escaped
attention in autonomous systems and correspond to specific trajectory subsets involving an integer number of
loops.
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I. INTRODUCTION

Hitherto investigated autonomous systems exhibit the
following types of recurrence time distributions to suffi-
ciently small regions of phase space: �i� exponential decay
P�t��e–�t ��1–6� and references in �7��, �ii� power-law decay
P�t�� t−� ��4,8–10� and references in �7��, �iii� strechted ex-

ponential decay P�t��e�−bt��
�11–13�, �iv� “wavy” decay in a

log-log-plot �14,15�, and �v� combinations of decays �i�–�iv�
�e.g., �16��. In the context of ergodic theory, it has been
shown that monotonic decay is expected as the size of the
recurrence region tends to zero �17,18�. In contrast, we will
consider in the present work recurrence to finite-sized sub-
sets of phase space, paying special attention to short-time
behavior.

Probabilities of times for the recurrence into finite-sized
regions of phase space are of importance in many nonlinear
systems: �i� earthquakes �8,19–21�, �ii� solar flares �9�, �iii�
wind speeds �11�, �iv� stock market indices �22�, �v� atmo-
spheric temperatures �12�, and �vi� turbulence at the edge of
a confined plasma �1�. Moreover, recurrence times to finite-
sized regions are of interest to chaotic scattering phenomena,
which have been studied in many areas of science �see
�2,10,23–26��. In fact, the recurrence time to the domain out-
side the scattering region is equal to the residence time—i.e.,
the time delay �7,16,27� or the collisional time �28�—in the
scattering region.

We will show that considering recurrences to finite-sized
domains can have a drastic consequence: namely, the ap-
pearence of pronounced peaks in the recurrence time distri-
bution. We demonstrate this here for simple, prototypical
systems having very diverse features, suggesting that the
peaks may be generic and relevant in some of the practically
exciting systems cited in the preceding paragraphs, as well as
in ergodic theory.

Multipeaked distributions have as yet only been reported
for stochastically resonant systems. In such systems an ex-
ternal, periodical driving is required and the peaks occur at
times related to that driving �see Sec. V�. In contrast, the

peaks in our �autonomous� systems occur according to intrin-
sic properties, which vary from system to system, as de-
scribed below.

We will start investigating classical scattering in a Hamil-
tonian system which involves a three-peaked potential. For
reinjection, the three peaks are surrounded by a circular po-
tential wall �Sec. II�. In Sec. III we investigate a simpler
Hamiltonian system: namely, two connected billiards. Fi-
nally, in Sec. IV, we examine a dissipative system: namely,
Lorenz equations.

II. REINJECTED CLASSICAL SCATTERING
IN A THREE-PEAKED POTENTIAL

We consider a particle in a two-dimensional �2D� poten-
tial given by

V�x,y� = �
n=1

3

he−�x� − x�n�2/b + a4�x2 + y2�2. �1�

The first term describes the peaks within which scattering
takes place. The second term describes a circular potential
wall, which surrounds the three peaks and causes reinjection
into the scattering region. The maxima of the peaks occur at
the x�n, which are given by �0,1 /�3�, �−1/2 ,−1/2�3�, and
�1/2 ,−1/2�3�—i.e., at the vertices of an equilateral triangle.
h is the height, b is the width of the peaks of the potential,
and a defines the size of the reinjection wall. We set
the particle mass equal to unity, h=29.5, b=0.185, a=1,
and the total energy E=15.92. Injection is possible at
E�Ecrit=15.88.

We define the boundary between the inner �scattering�
and outer �reinjecting� regions as the curve defined by
dV /dr=0, where r=�x2+y2 is the distance from the center of
the equilateral triangle. This boundary is shown by a dashed
curve in Figs. 2 and 3, below. The figures also show the
saddle points �open circles� and the maxima �solid circles� of
the potential.

The times that are physically interesting are those for the
recurrence to the inner region �residence in the outer region�
and those for the recurrence to the outer region �residence in
the inner region�. The probability distributions of these*Electronic address: markus@mpi-dortmund.mpg.de
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times, obtained numerically by starting a single trajectory
within the stochastic regime and evaluating 6000 recur-
rences, are shown in Fig. 1. The discrete peaks in Fig. 1
correspond to specific sets of trajectories, as exemplified in
Figs. 2 and 3. The nth peak �n=1,2 ,3 , . . ., counting from left
to right� in Fig. 1�a� corresponds to n loops in the outer

region, as illustrated in Fig. 2 for n=1 and n=3. The maxi-
mum of the first peak in Fig. 1�a� corresponds to the shortest
loop, which follows a path such as the straight, dotted line S
in Fig. 2. �There are two other equally short loops; they are
obtained by rotating S around the origin by 60° and 120°.�
The residence time T corresponding to these shortest
loops can be calculated by considering �dy /dt�2 /2
=E−V�0,y�—i.e.,

T = 2��
y1

y2 dy
�2�E − V�0,y��

� , �2�

where dV /dr=0 for y=y2 and E−V�0,y1�=0. Equation �2�
yields To=1.35 for the outer shortest loop. In Fig. 1�a� we
show this calculated value of To by the leftmost dashed ver-
tical line. The other dashed vertical lines in this figure were
drawn at integer multiples of To. One can see that these
multiples are good approximations of the durations of the
shortest trajectories with n loops. In fact, the particle moves
back and forth closely to the shortest loop �straight, dotted
line illustrated in Fig. 2�; if it escapes after the nth approach
to the boundary, then it corresponds to the left of the nth
peak.

FIG. 1. Probability P of recurrence times to the inner region �a�
and to the outer region �b� of a scattering system consisting of a
three-peaked potential sorrounded by a reinjecting potential wall, as
given by Eq. �1�. �a�, �b� The vertical, dashed lines indicate the
theoretical evaluations using Eq. �2� as explained in the text.
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FIG. 2. Reinjecting trajectories outside the scattering region,
consisting of one loop �bottom�, which corresponds to the first peak
in Fig. 1�a�, and consisting of three loops �upper left�, which cor-
respond to the third peak in Fig. 1�a�. Straight dotted line S: shortest
trajectory. Open circles: saddles of the potential. Solid circles: po-
tential maxima.

FIG. 3. Trajectories inside the scattering region, consisting of
one loop �a�, which corresponds to the first peak in Fig. 1�b�, and
consisting of two loops �b�, which correspond to the second peak in
Fig. 1�b�. Straight dotted line S�: shortest trajectory.
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The scenario is similar for the trajectories in the inner
region. The nth peak �counting from left to right� in Fig. 1�b�
corresponds to n loops in the inner region, as illustrated in
Fig. 3�a� for n=1 and in Fig. 3�b� for n=2. The duration at
the nth peak can be approximated by nTi, where Ti=0.86 is
obtained with Eq. �2� integrating along a straight loop, such
as that indicated by the dotted line S� in Fig. 3�a�. �S� is the
shortest loop in the inner, scattering region; there are two
other, equally short loops, which are obtained by rotating S�
around the origin by 60° and 120°.� The resulting approxi-
mations nTi are given by vertical, dashed lines in Fig. 1�b�.
As in Fig. 1�a�, they are good approximations of the dura-
tions of the shortest trajectories with n loops. It is notewhor-
thy that for higher energies �E�17�, we obtained single
probability peaks between the peaks just described; the rea-
son was that, in addition to moving in trajectories with n
loops, the particle can escape near a saddle point that is not
equal to the saddle point close to its entrance into the scat-
tering region. If that happens after n loops, then this
“sidewards” escape causes a peak between nTi and �n+1�Ti.

In order to check the robustness of the results, not only
with respect to changes in E, we also changed �for all inves-
tigated E� the scattering and reinjection geometry by using
the following parameter sets �h ,b ,a� in Eq. �1�: �40, 0.2, 1�,
�40, 0.2, 0.2�, and �29.5, 0.2, 0.2�. These parameter sets lead
to multipeaked distributions similar to those in Fig. 1.

III. INTERMITTENCY IN CONNECTED BILLIARDS

Billiards connected through a hole are examples of con-
figurations leading to intermittency in Hamiltonian systems
�29�. We consider here a circle connected to a Bunimovich
stadium, as shown in Fig. 4. We analyze numerically the

recurrence times to the circle—i.e., the residence times in the
stadium for a single trajectory—starting within the stochastic
regime and analyzing 2.4�107 recurrences. The resulting
probability distribution is shown in Fig. 5. As in the scatter-
ing system �Sec. II�, the peaks can be associated with par-
ticular sets of “loops,” which in the present system consist of
straight segments, as illustrated for the first and fourth “loop”
in Fig. 4.

We want to point out, that the peaks in Fig. 5 exist along
the whole realm of the figure; they are superposed to the
exponential tail and their amplitude decreases exponentially,
so as to become unresolved for large t in the present figure.
As a test for robustness, we changed the width of the stadium
by a factor from 0.5 to 5.0 and obtained peaks similar to
those in Fig. 5. Obviously a change of the height just
changes the time between the peaks.

IV. LORENZ EQUATIONS

In contrast to the preceding sections, where we considered
conservative systems, we consider here a dissipative system:
namely, that described by the Lorenz equations �30�

ẋ = − 	x + 	y , �3�

ẏ = rx − y − xz , �4�

ż = − bz + xy . �5�

We set 	=10, r=28, and b=8/3 and examine the recur-
rence to the scroll defined by x�0. In the original physical
sense of these equations �30�, the sign of x indicates the
turning direction of convection rolls.

We integrated Eqs. �3�–�5� starting a single trajectory at
x=y=z=10−3 and waited 105 recurrences to allow the system
to settle on the attractor; then, we evaluated 106 recurrences
to get the probability distribution shown in Fig. 6. The nth
peak �n=1,2 , . . ., counting from left to right� is associated
with trajectories consisting of n loops, exemplified in Fig. 7
for n=1 and n=5.

The distance between the peaks can be estimated analyti-
cally, considering that the trajectory circles around an un-

FIG. 4. Trajectories with one loop �a�, corresponding to peak 1
in Fig. 5, and with four loops �b�, corresponding peak 4 in Fig. 5.

FIG. 5. Probability P of recurrence times to the circle at the top
of Fig. 4 �residence time in the lower Bunimovich stadium�.
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stable fixed point F �see Fig. 7�, because the Jacobi matrix
has a complex eigenvalue 
 there. Because the peaks corre-
spond to complete loops around F, T=2� / Im�
�	0.62
should be an approximation of the peaks’s distance �t. This
is indeed the case for sufficiently large t �t�3�; in fact, �t
	0.63 �see Fig. 6�. In contrast, the distance between the first
two peaks is larger than T ��t	0.76� because these peaks
correspond to rotations so far from F that deviations from the
linear approximation leading to 
 become noticeable.

As a test for robustness, we modified the condition x0
to xa varying a within the interval �−6,6�. Also we modi-
fied r, which is proportional to the temperature difference in
the original physical sense, to 40. Under any of these
changes we optained peaks similar to those shown in Fig. 6.
This robustness is explainable by the fact that the performed
changes do not affect the cycling around the fixed point F,
which causes the peaks.

V. DISCUSSION

Multipeaked distributions have as yet �except for stochas-
tically resonant systems; see below� not been reported. The
reasons are �i� only recurrences to small regions were con-
sidered �e.g., to small circles for Lorenz equations �3��, �ii�

short times were not investigated �16� or not sufficiently re-
solved, and �iii� the appropiate method was not implemented;
this is the case in the experimental study of circuits in �31�,
where the question of residence times in scrolls of attractors
was explicitely posed, but only a Fourier analysis, which
does not reveal the peaks, was performed.

We have shown here that multipeaked distributions of re-
currence time are obtained for a variety of systems. Each
peak corresponds to a subset of a chaotic trajectory, consist-
ing of segments with a particular number of loops. There
exist cases for which the peak maxima decay exponentially
�Fig. 5 within some time intervals and Fig. 6�, which is ex-
plained as follows. The probability of nonrecurrence after the
n loops is �1− p�n, where p is the probability of recurrence
after one loop. The probability P of recurrence right after n
loops thus is p�1− p�n. Considering n� t and defining
a=1/ �1− p��1, we obtain P�a−t.

Note that the orbits defining the peaks are neither periodic
nor quasiperiodic. In fact, we found that small perturbations
of n-looped orbits lead to loops with a different value of n.
This value is the common property of the orbits determining
a given peak. The duration of these orbits is not defined by
single numbers, as in periodic or quasiperiodic orbits, but
varies continuosly within the intervals between local peak
maxima �see Figs. 1, 5, and 6�.

In addition to the exponential decay of the peak maxima,
we also obtained in some cases �see Figs. 1 and 6� an expo-
nential �or nearly exponential� decay of each peak. This can
be explained by the fluctuations around each n-fold loop and
by assuming that these fluctuations follow the exponential
decay generally observed for chaotic systems. These fluctua-
tions entail recurrence times that are larger than at the peak
maxima. In contrast to our exponentially decaying peaks,
those peaks due to stochastic resonance are always bell
shaped �17,18,32–36�; i.e., fluctuations can both increase or
decrease the recurrence times, as compared to those at the
maxima.

Stochastically resonant systems �17,18,32–36� are the
only systems for which, to our knowledge, multipeak time
distributions have hitherto been reported. In such systems an
external signal is amplified with the help of noise
�18,32,33,35� or of intrinsic chaotic fluctuations that play the
role of an “effective” noise �17,34,36�. As explained in
�33,32�, the peaks then occur at times equal to nT0 or
�2n−1�T0 �n=1,2 ,3 , . . .; T0: period of the external signal�.
In contrast, the systems described here are not externally
driven; thus, peak formation is described by intrinsic proper-
ties of the system.

Except for the case of the Lorenz equations �Sec. IV�, we
obtained asymptotic approaches to an exponential decay of
P�t� for large t. This is illustrated in Fig. 5 for the billiard
system. In the case of the scattering system �Sec. II� we
found that peaks are replaced by an exponential decay of P
for large t if we extend the time interval considerably beyond
that of Fig. 1. Time is then sufficiently large for chaos to
disrupt n-looped trajectories and the situation becomes com-
parable to that reported for many cases in the literature �cited
in Sec. I�.

Multipeaked reccurrence time distributions, as those ex-
hibited in this work, seem evident at first sight, in spite of

FIG. 6. Probability P of reccurrence times to positive x for the
Lorenz equations �3�–�5�.

FIG. 7. Trajectories �projected on the x-y plane� with one loop
�fat curve�, corresponding to peak 1 in Fig. 6, and with five loops
�thin curve�, corresponding to peak 5 in Fig. 6. F: unstable fixed
point.
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numerous counterexamples with no peaks, as that of other
systems found in the literature �see, e.g., �1–3,5–16��. But
there is no a priori reason to assume that a considerable
number of peaks can occur before chaos destroys the n loops,
rendering a monotonic decay of P�t�. Moreover, peaks may
never be destroyed, as is the case for the Lorenz equations.
Both in short-time or in indefinite phenomena, it is remark-
able that abrupt changes of P�t�, owing to transitions from n
to n+1 loops, “quantize” the system in a way that as yet has
escaped attention.

We have shown that multipeaked distributions exist in
highly dissimilar systems: conservative ordinary differential

equations �ODE’s�, billiards, and dissipative ODE’s. The di-
versity of these systems, as well as their in other aspects
generic properties, suggests that our results are generic too.
If there exist conditions for which this is true and if, in future
work, multipeaked distributions were found in real climatic,
tectonic, or other risky systems, then the occurrence of pro-
nounced minima and maxima of probabilities would be of
obvious importance.
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